





## Geologic Map of the Germantown Quadrangle, Montgomery County, Maryland

by  
Rebecca Kavage Adams  
2025



|   |   |   |
|---|---|---|
| 1 | 2 | 3 |
| 4 |   |   |
| 5 |   |   |
| 6 | 7 | 8 |

1. Buckeystown  
2. Urbana  
3. Damascus  
4. Gaithersburg  
5. Gaithersburg  
6. Sterling  
7. Seneca  
8. Rockville  
Adjoining 7.5' quadrangle names (Germantown quadrangle shaded)



### References:

Cloos, E., and Cooke, C.W., 1953, Geologic map of Montgomery County (Maryland) and the District of Columbia: Maryland Department of Geology, Mines and Water Resources, scale 1:62,500.

Drake, A.A., Southworth, S., and Lee, K.Y., 1999, Geologic map of the Seneca quadrangle, Montgomery County, Maryland, and Fairfax and Loudoun Counties, Virginia, 1975, Map showing mineral resources of Montgomery County, Maryland: U.S. Geological Survey Miscellaneous Investigations Series, Map 1:920-E, scale 1:62,500.

Froelich, A.J., 1985, Geochemical and petrologic features of some Mesozoic diabase sheets in the Northern Culpeper Basin, in Robinson, G.R., Jr., and Froelich, A.J., eds., Proceedings of the Second U.S. Geological Survey Workshop on the early Mesozoic basins of the eastern United States, U.S. Geological Survey Circular 946, Reston, VA, November 14-16, 1984, p. 89-91.

Krol, M.A., and Muller, P.D., 1995, Microstructural evidence for dextral shearing within the Pleasant Grove Zone, Maryland: Northeastern Geology and Environmental Sciences, v. 17, no. 2, p. 151-161.

Muller, P.D., 1994, Geologic map of the Finksburg Quadrangle, Carroll and Baltimore Counties: Maryland Geological Survey, scale 1:24,000.

Smoot, J.P., and Robinson, G.R. Jr., 1988, Base- and precious-metal occurrences in the Culpeper Basin, Northern Virginia, in Froelich, A.J., and Robinson, G.R. Jr., eds., Studies of the early Mesozoic basins of the eastern United States: U.S. Geological Survey Bulletin, Geology of the early Mesozoic basins of eastern North America, Reston, VA, May 11-14, 1987, 1776, p. 31-39.

Southworth, S., 1998, Geologic map of the Prolepsville quadrangle, Frederick and Montgomery Counties, Maryland, and Loudoun County, Virginia: U.S. Geological Survey Geologic Quadrangle Map GQ-1761, scale 1:24,000.

Southworth, S., 1999, Geologic map of the Urbana quadrangle, Frederick and Montgomery Counties, Maryland: U.S. Geological Survey Geologic Quadrangle Map GQ-1768, scale 1:24,000.

Southworth, S., Brezinski, D.K., Drake, A.A., Burton, W.C., Orndorff, R.C., Froelich, A.J., Reddy, J.E., Deneney, Danielle, and Daniels, D.L., 2008, Geologic map of the Frederick 30' x 60' quadrangle, Maryland, Virginia, and West Virginia: U.S. Geological Survey Scientific Investigations Map SIM-2889, scale: 1:100,000.

### Description of Map Units

**Alluvium (Holocene)**  
Poorly- to well-sorted, stratified mixtures of unconsolidated clay, silt, sand, gravel, and cobbles underlying floodplains of nearly all rivers and tributaries. Channels of tributaries are commonly incised into bedrock with alluvium covering exposed along the banks. Thickness of alluvium is highly variable, and is a function of bedrock, topography, and land-use practices. Thick deposits of alluvium are present where erosion has occurred, due to agricultural practices of the 19th century and recent suburban development, has accumulated (Southworth et al., 2008). Buildups of eroded sediment also occur above historic mill dams.

**Diabase dikes and sheets (Early Jurassic)**  
Medium to dark gray, medium-grained, equigranular, massive diabase that weathers to characteristic rounded boulders with a rusty orange to brown surface. The Boyd's sheet is saucer-shaped and fine-grained at the margin (Gottfried and Froelich, 1985). Linear dike southwest of Germantown is largely concealed by recent suburban development. Dikes are mapped on presence of rounded boulders and locations on previous geological maps (Closs and Cooke, 1953 and Froelich, 1975).

**Thermally metamorphosed rocks (Triassic)**  
Includes dusky blue to medium dark gray cordierite-spotted hornfels; grayish red meta-arkose, and pale pink to medium gray meta-conglomerate occurring as zones contact aureole adjacent to diabase sheet.

**Manassas Sandstone (Triassic)**  
Predominantly gray, grayish red, and reddish brown, fine- to coarse-grained, thick-bedded, arkosic, micaceous sandstone and reddish brown siltstone, shale, and conglomerate. Two members are mapped on the Germantown Quadrangle.

**Poolesville Member**  
Gray, grayish red, and reddish brown, fine- to coarse-grained, thick-bedded, arkosic, micaceous sandstone. Crossbeds and coarse-grained channel lags are present. Interbedded with reddish brown, thin-bedded, calcareous siltstone in fining-upward fluvial sequences. Thickness in Germantown area is estimated at 1700 ft (520 m). Contact with the underlying Reston Member is gradational.

**Reston Member**  
Light gray to grayish red and grayish pink conglomerate containing well-rounded to subrounded clasts of phyllite, schist, quartzite, metagraywacke, and quartz, in a poorly-sorted, coarse-grained, arkosic sandstone matrix. Interbedded with pale reddish brown sandstone and siltstone. Clast angularity increases where basal conglomerate unconformably overlies metasedimentary rocks of the Marburg Formation along Great Seneca Creek. Thickness varies from approximately 20 to 250 feet (7-75 m).

**Ijamsville Phyllite (Lower Cambrian? and Neoproterozoic?)**

Grayish purple to grayish blue phyllite with minor slate and bodies of metabasalt, quartzite, and conglomerate. Four lithologies are mapped on the Germantown Quadrangle.

**Undifferentiated**  
Grayish purple, grayish blue, and dark greenish gray phyllite containing white vein quartz and minor slate. Folded and sheared phyllite with abundant foliated micaeous quartz veins and epidote deposits is present near Germantown Fault and Hyattstown Fault. Faults are mapped along NE-SW trending ridges on Route 109 and Peach Tree Ridge Road. Shear zone around faults is marked with wavy lines as shown in lower half of symbol.

**Metabasalt**  
Greenish gray to dark greenish gray, schistose metabasalt. A small body is mapped in the northwest corner of the quadrangle along the Little Monocacy River and another mapped north of Comus is based on float.

**Quartzite**  
Yellowish gray to olive gray, fine- to medium-grained, massive quartzite locally intervening between phyllite and metabasalt. One body is mapped in the northwest corner of the quadrangle.

**Conglomeratic quartzite**  
Greenish gray, medium- to coarse-grained conglomerate with glassy quartz pebbles and medium light gray phyllite chips. One small body is mapped north of Comus and is based on float.

**Marburg Formation (Lower Cambrian? and Neoproterozoic?)**

Light to dark olive gray phyllite and metasiltstone with bodies of metagraywacke, metabasalt, quartzite, and chloritic phyllite. Six lithologies are mapped on the Germantown Quadrangle.

**Undifferentiated**  
Dark greenish gray to light olive gray, phyllitic metasiltstone containing thin, light gray, quartz laminae and ribbons; medium purplish gray to very pale orange, muscovite phyllite similar to that of the Jammsville Phyllite with occasional siderite pseudomorphs after pyrite. Much of the unit is transposed, phyllonitized, and has abundant pods of white vein quartz with deposits of chlorite and epidote. Shear zone around fault is marked with wavy lines as shown in lower half of symbol.

**Quartzite**  
Light to medium bluish gray and light olive gray, coarse-grained, blocky to massive quartzite. Mapped south of Little Seneca Lake and along Bucklodge Branch.

**Metagraywacke**  
Grayish green to black, schistose, blocky-weathering metagraywacke interbedded with dark gray phyllite. Mapped south of Little Seneca Lake and along Great Seneca Creek.

**Chlorite-phyllite**  
Greenish gray, chlorite-sericite phyllite containing white vein quartz. Highly folded and sheared with abundant deformed quartz veins. It is mapped north of Great Seneca Creek on the western border of the Pleasant Grove Fault.

**Metabasalt**  
Grayish-green, aphanitic metabasalt. One small body mapped along a tributary to Bucklodge Branch.

**Conglomeratic quartzite**  
Glossy, subangular, quartz pebbles, yellowish gray shale chips, and occasional euhedral magnetic grains (5 cm) in greenish gray matrix. Weathers moderate yellowish brown, blocky to massive.

**Mather Gorge Formation (Lower Cambrian? and Neoproterozoic?)**

Olive green to dark greenish gray schist and metagraywacke with bodies of metagabbro and serpentinite. Three lithologies are mapped on the Germantown Quadrangle.

**Undifferentiated**  
Quartz-mica schist and quartzitic metagraywacke interbedded in layers and lenses on a millimeter to meter scale. Quartz-muscovite-chlorite-plagioclase-epidote-magnetite garnet schist is fine-grained, lustrous greenish gray to gray. Metagraywacke is light to dark olive gray, fine- to medium-grained, with quartz pebbles and graded bedding occasionally visible. Strings and pods of sociably folded and boudinaged white quartz veins are abundant.

**Sheared**  
Interbedded quartz-mica schist and quartzitic metagraywacke with penetrative S-C metamorphic fabric, formed by the intersection of the dominant foliation (S) and the shear plane (C) near the Pleasant Grove Fault (Krol and Muller, 1995; Muller, 1994). Mapped on distinct appearance of rotated foliation; lithologically is similar to C-Zng.

**Ultramafic Rocks**  
Ultramafic serpentine, magnesian schist, and metagabbro that occur within rocks of the Mather Gorge Formation. Grayish green to black, fine- to medium-grained serpentinite weathers to a rounded, soft, light gray surface. Very light gray to dark greenish gray actinolite-tremolite-chlorite schist often contains euhedral bladed crystals from 0.1 to 0.4 inch (3 mm to 1 cm) in length. 0.1 to 0.2 inch (3 to 5 mm) euhedral magnetite grains occur in abundance within the serpentinite and magnesian schist. Very light gray and dark gray to black, medium- to coarse-grained metagabbro is comprised of plagioclase feldspar, hornblende, epidote, can have a speckled appearance, and weathers blocky.

### Explanation of Map Symbols

| Planar Features                                                                                            |    |                                                                                        |
|------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------|
| Contacts                                                                                                   |    |                                                                                        |
| Geologic contacts; approximately located, dotted where concealed                                           | 42 | Inclined bedding; showing strike and dip                                               |
| Faults                                                                                                     |    |                                                                                        |
| Strike-slip fault, location approximate. Arrows show dextral motion. Dotted where concealed.               | 75 | Inclined joint; showing strike and dip                                                 |
| Thrust fault, location approximate. Sawtooth on upper (tectonically higher) plate. Dotted where concealed. | 12 | Vertical or near-vertical joint; showing strike                                        |
| Normal fault, location approximate. Ball and bar on downthrown block. Dotted where concealed.              | 1  | Inclined cleavage, showing strike and dip                                              |
| Small, minor fault, showing strike and dip of fault plane                                                  | 20 | Vertical cleavage, showing strike                                                      |
| Normal fault, location approximate. Ball and bar on downthrown block. Dotted where concealed.              | 24 | Inclined foliation, showing strike and dip                                             |
| Strike-slip movement toward viewer                                                                         | 12 | Vertical foliation, showing strike                                                     |
| Strike-slip movement away from viewer                                                                      | 1  | Inclined phyllonitic foliation, showing strike and dip                                 |
| Folds                                                                                                      |    |                                                                                        |
| Small, horizontal anticline; showing strike                                                                | 60 | Vertical phyllonitic foliation, showing strike                                         |
| Small, plunging anticline, showing strike and plunge                                                       | 21 | Inclined schistosity, showing strike and dip                                           |
| Small, plunging syncline, showing strike and plunge                                                        | 21 | Vertical shear band cleavage, right hand sense of shear, showing strike and dip        |
| Small, inclined folds, showing strike and plunge                                                           | 12 | Inclined shear band cleavage, right hand sense of shear, showing strike and dip        |
| Linear Features                                                                                            |    |                                                                                        |
| Quarry or mine, inactive                                                                                   | 67 | Inclined lineation at intersection of bedding and cleavage, showing bearing and plunge |
| Other Features                                                                                             |    |                                                                                        |
| Inclined aligned deformed mineral lineation, showing bearing and plunge                                    | 8  | Inclined lineation at intersection of two cleavages, showing bearing and plunge        |
| Base Map Symbols                                                                                           |    |                                                                                        |
| Transportation                                                                                             |    |                                                                                        |
| Primary highway, divided by median strip                                                                   | 30 | Topographic index contour (100-ft interval)                                            |
| Primary route, class 1 (divided, lanes separated)                                                          | 30 | Topographic intermediate contour (20-ft interval)                                      |
| Primary route, class 1 (undivided)                                                                         | 30 |                                                                                        |
| Secondary route, class 2                                                                                   | 30 |                                                                                        |
| Light duty road or street, class 3                                                                         | 30 |                                                                                        |
| Railroad                                                                                                   | 30 |                                                                                        |
| Topography                                                                                                 |    |                                                                                        |
| Hydrography                                                                                                | 30 |                                                                                        |
| Maryland Creek                                                                                             | 30 |                                                                                        |
| Deep Lake                                                                                                  | 30 |                                                                                        |
| Water body (e.g. lakes, ponds, rivers)                                                                     | 30 |                                                                                        |